
Eur. Phys. J. D 14, 205–215 (2001) THE EUROPEAN
PHYSICAL JOURNAL D
c©

EDP Sciences
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Abstract. The laser driven dynamics of the OH(D) stretching vibration in phthalic acid monomethylester
is investigated. The combination of a 55-dimensional all-Cartesian reaction surface Hamiltonian and the
time-dependent self-consistent field approach is shown to provide a microscopic picture of intramolecular
vibrational energy redistribution taking place upon interaction with an external laser field. Choosing
suitable zeroth-order vibrational states and combinations thereof a quasi-periodic in-phase and out-of-
phase oscillatory behavior is observed manifesting energy flow on different time scales. The fingerprints of
this behavior in transient absorption spectroscopy are also discussed.

PACS. 33.15.Fm Bond strengths, dissociation energies – 31.15.Ar Ab initio calculations –
31.15.Qg Molecular dynamics and other numerical methods

1 Introduction

Multidimensional dynamics of coupled nuclear or vibronic
degrees of freedom (DOF) in polyatomic molecules con-
tinues to be a challenge to both experiment and theory.
On the experimental side it was appreciated already in
the eighties that even rather large molecules, for which a
high vibrational density of states is expected, can show
a nonstatistical behavior. This is exemplified by the ob-
servation of quantum beats, for instance, in time-resolved
fluorescence signals [1–4]. While this concerns the short
time dynamics it has been shown that also the behavior
on intermediate time scales is often far from being mono-
exponential [5] as would have been predicted by the classic
Bixon-Jortner Golden rule approach [6] (for a recent re-
view see also [7]).

From the theoretical point of view the concept of cou-
pled zeroth-order states has been very fruitful in describ-
ing short time dynamics (for reviews see, e.g., [7,8]). This
is related to the fact that eigenstates of some multidimen-
sional vibrational Hamiltonian, for instance, are hardly
obtainable for large molecules. On the other hand, pro-
vided that the time scale related to the coupling between
zeroth-order states is long compared to the duration of
the laser pulse, zeroth-order states may be prepared in the
experiment [9]. Establishing the link between theory and
experiment, Felker and Zewail derived the conditions for
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observation of specific beating frequencies in coupled mul-
tilevel systems [10]. For two coupled zeroth-order states
this gives the typical in-phase and out-of-phase oscilla-
tions of the state populations as a manifestation of the
selectivity of energy flow (see also [11]) which have been
observed, e.g., in anthracene [3].

In the present contribution the ultrafast dynamics
of the OH (and OD) stretching vibration in a strong
intramolecular hydrogen bond formed in the electronic
ground state is studied. Hydrogen atom and proton mo-
tion within hydrogen bonds is of outstanding importance
for various processes in chemistry and biology [12–14].
Ultrafast proton transfer dynamics in the electronic ex-
cited state has already been observed for a number of
molecular systems using time-resolved nonlinear spec-
troscopy [15–18] (for an overview about earlier work see
also [19]). As a consequence of the large changes taking
place in the electronic structure upon optical excitation,
proton transfer can be strongly coupled to the molecule’s
low-frequency vibrations. This leads to vibrational coher-
ences modulating the pump-probe signals [20,21].

Monitoring ultrafast hydrogen bond dynamics in the
electronic ground state became feasible only recently with
the development of intense femtosecond infrared (IR) laser
sources. Among the topics which have been studied in
this respect are, for instance, the dynamics of liquid wa-
ter [22,23] or the OH-stretching dynamics of monomeric
and dimerized alcohols [24]. Very recently, the group
of Elsaesser reported on the observation of vibrational
quantum beats after excitation of the OD and the OH-
band, respectively, in phthalic acid monomethylester us-
ing 130 fs IR laser pulses in an IR pump-probe setup [25].
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These findings have been explained in terms of anhar-
monic couplings between the (nonreactive) OD dynamics
and the low-frequency motion of the oxygen atoms which
are involved in hydrogen bonding.

A microscopic modeling of the nuclear dynamics of
polyatomics as induced by ultrashort IR laser pulses re-
quires two ingredients: first, the Hamiltonian has to be
defined. This can be done employing the reaction sur-
face idea [26] where in particular the anharmonicity of
the potential energy surface with respect to some se-
lected coordinates is included (see Sect. 2.1). Second,
given the multidimensional Hamiltonian an appropriate
numerical method for the solution of the time-dependent
Schrödinger equation has to be chosen. When using the re-
action surface approach most of the nuclear DOF, i.e. the
substrate or “bath”, are treated in harmonic approxima-
tion. Thus a normal mode representation shall provide a
useful zeroth-order reference although there is some cou-
pling to the anharmonic coordinates as well as the pos-
sibility of mode-mode coupling (see Sect. 2.1). Having a
Hamiltonian which suggests a separable representation of
the different DOF, the time-dependent self-consistent field
(TDSCF) approach [27] appears to be most suitable. Be-
ing based on a variational principle [28,29] it has the ad-
vantage that the numerical effort scales only linearly with
the number of DOF (for a recent review see also [30]). In
addition the harmonic treatment of the substrate facili-
tates an exact solution, i.e. these DOF behave like uncou-
pled linearly driven classical oscillators [31,32]. It has been
pointed out, however, that in cases where the dynamics
depend on details of the interaction potential between the
separated DOF, a multi-configuration TDSCF treatment
is required [32–34].

In the following we study the dynamics of a strong hy-
drogen bonded model system combining the reaction path
Hamiltonian and the multidimensional TDSCF approach.
In Section 2.1 the idea of the all-Cartesian reaction sur-
face Hamiltonian is summarized. Its TDSCF implemen-
tation is discussed in Section 2.2. Numerical results are
presented for phthalic acid monomethylester (PMME-H)
and its isotope (PMME-D). This includes the analysis of
the Hamiltonian in terms of strongly coupled modes in
Section 3.1 and the laser driven dynamics in Section 3.2.
In Section 4 we give a summary.

2 Theory

2.1 Cartesian reaction surface Hamiltonian

It has long being appreciated that proton or hydrogen
atom dynamics can be strongly coupled to heavy atom
motions of the molecular frame [35]. This necessitates the
use of a multidimensional Hamiltonian for an adequate
description of the molecular dynamics. Thus inspection
of the minimum energy path, i.e. the intrinsic reaction
coordinate [36], is not sufficient but orthogonal harmonic
modes, for instance, have to be included along the reac-
tion path [26,37]. For the case of proton transfer coupled
to heavy atom motions the minimum energy path will be

rather sharply curved such that it is more advisable to use
a reaction surface defined in terms of several internal co-
ordinates [38,39]. From the practical point of view this de-
scription has the disadvantage that the coupling between
different DOF is contained in the kinetic energy operator.
An alternative which is well-suited for proton transfer re-
actions as well as nonreactive proton motion in a strong
hydrogen bond, is provided by an all-Cartesian reaction
surface (CRS) Hamiltonian which contains all couplings
in the potential energy operator [40]. A high-level quan-
tum chemical realization of this concept for polyatomics
has only recently been provided [41–43].

The first step in the construction of a CRS Hamilto-
nian is the identification of Cartesian large amplitude co-
ordinates, x, whose choice is often obvious in the case of
hydrogen bond dynamics. The remaining coordinates are
comprised into the substrate Z, which is treated in har-
monic approximation, similar to the case where internal
reaction coordinates are used. Given a reference configu-
ration Z(0) of the substrate, i.e. usually the most stable
geometry, the total potential energy surface (PES) is ex-
panded in the vicinity of this reference configuration along
the reaction surface:

U(x; Z) ≈ Vref(x) +
(
∂U(x; Z)

∂Z

)
Z=Z(0)

(Z− Z(0))

+
1
2

(Z− Z(0))
(
∂2U(x; Z)
∂Z∂Z

)
Z=Z(0)

(Z− Z(0)) (1)

where Vref(x) = V (x; Z(0)). In a next step (mass-
weighted) normal modes Q are introduced for a certain
configuration x̃, i.e. in general the second derivative ma-
trix will be diagonal only at this point. Therefore we have

Hmol =
Nrc∑
a=1

Ta + Vref(x)

+
Nsub∑
k=1

(
Tk +

1
2
ω2
k(x)Q2

k

)

−
Nsub∑
k=1

fk(x)− 1
2

Nsub∑
l6=k=1

Kkl(x)Ql

Qk
 . (2)

Note that there are Nrc reaction coordinates and there-
fore Nsub = 3Nnuc − Nrc − 6 substrate normal modes.
The kinetic energy operator for the reaction and substrate
coordinates has been introduced as Ta = P 2

a /2Ma and
Tk = P 2

k /2, respectively.
There are two types of couplings between the reac-

tion coordinate and the substrate normal modes. First,
because the reaction coordinate does not necessarily fol-
low a minimum energy path, a force fk(x) is acting on
the normal modes. Second, there is a coupling between
different normal modes mediated by the reaction coordi-
nate Kkl(x) (k 6= l), note that Kkl(x) = Klk(x). If the
latter coupling is weak, it is reasonable to introduce the
normal mode frequency ω2

k(x) ≡ Kkk(x). The strength of
the linear coupling can also be expressed in terms of the
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reorganization energy, that is the energy which is required
to restore the equilibrium position of the substrate oscil-
lators if the off-diagonal elements of the force constant
matrix are neglected:

Ereorg(x) =
Nsub∑
k=1

∆k(x) =
Nsub∑
k=1

f2
k (x)

2ω2
k(x)

· (3)

The interaction of the molecule with the laser field is
treated in semiclassical dipole approximation, i.e. the in-
teraction Hamiltonian is

HF(x, t) = −µ(x)E(t), (4)

where µ(x) is the dipole moment function. In principle the
dipole moment variation along the normal modes could
also be incorporated, e.g. within a linear approximation
[43]. However, here we are primarily interested in the exci-
tation of an OH(D) vibration which is the optically active
DOF in the considered spectral region. Therefore, E(t) in
equation (4) stands for the component of the electric field
strength along the optically active or reaction coordinate.

2.2 TDSCF quantum dynamics

In the TDSCF approach the total wave function
Ψ(x, {Qk}, t) is written as a Hartree product (note that
we restrict ourselves to a single reaction coordinate x in
the following, i.e. a = a in Eq. (2))

Ψ(x, {Qk}, t) = Ψa(x, t)
Nsub∏
k=1

Ψk(Qk, t). (5)

Given some Hamiltonian H the TDSCF equations of mo-
tion are derived from the Dirac-Frenkel variational prin-
ciple [28,29]:

〈δΨ |i~ ∂
∂t
−H|Ψ〉 = 0. (6)

After omitting an unimportant phase factor the equation
of motion for the reaction coordinate reads

i~
∂

∂t
Ψa(x, t) = [Ta + VSCF(x, t)− µ(x)E(t) ] Ψa(x, t),

(7)

where the time-dependent self-consistent field potential
VSCF(x, t) is defined as

VSCF(x, t) = Vref(x) +
∑
k

[
1
2
ω2
k(x)〈Ψk|Q2

k|Ψk〉

−
(
fk(x)− 1

2

∑
l6=k

Kkl(x)〈Ψl|Ql|Ψl〉
)
〈Ψk|Qk|Ψk〉

]
. (8)

For the substrate modes we obtain

i~
∂

∂t
Ψk(Qk, t) =

[
Tk +

1
2
Ω2
k(t)Q2

k − Fk(t)Qk
]
Ψk(Qk, t)

(9)

Here we defined the time-dependent harmonic frequencies

Ω2
k(t) = 〈Ψa|ω2

k(x)|Ψa〉 (10)

and the time-dependent intramolecular linear driving
forces

Fk(t) = 〈Ψa|fk(x)|Ψa〉 −
1
2

∑
l6=k
〈Ψa|Kkl(x)|Ψa〉〈Ψl|Ql|Ψl〉.

(11)

The equations of motion (9) are of the form of lin-
early driven harmonic oscillators with time-dependent
frequencies. The corresponding analytical solutions are
well-known (see, for example, Refs. [44–46]). There-
fore, all time-dependent expectation values such as
〈Ψk(t)|Qk|Ψk(t)〉 and 〈Ψk(t)|Q2

k|Ψk(t)〉 as well as the vi-
brational state populations (see below), are reduced to
tabulated integrals [47].

Initially all DOF are assumed to be in the respective
vibrational ground states. The “true” eigenfunction of the
vibrational ground state of the overall molecular system
has been obtained by the relaxation method [48], i.e. by
propagating the TDSCF equations of motion in imaginary
time, with the laser field being switched off, E(t) = 0.
This gives the stationary vibrational ground states |Ψa,g〉
and |Ψk,g〉 corresponding to the overall vibrational ground
state |Ψg〉 of the entire molecule. It is represented by the
wave function

Ψg(x, {Qk}) = Ψa,g(x)
Nsub∏
k=1

Ψk,g(Qk). (12)

This state is then used as the initial state for the simula-
tions of the laser-driven molecular dynamics accompanied
and followed by intramolecular vibrational energy redis-
tribution (IVR).

As a basis set for the reaction coordinate use is made
of the eigenstates supported by the time-independent self-
consistent field potential V SCF

g (x) corresponding to the
overall ground vibrational state (12), that is,

V SCF
g (x) = Vref(x) +

∑
k

{1
2
ω2
k(x)〈Ψk,g |Q2

k|Ψk,g〉

−
[
fk(x)− 1

2

∑
l6=k

Kkl(x)〈Ψl,g |Ql|Ψl,g〉
]
〈Ψk,g|Qk|Ψk,g〉

}
·

(13)

The respective eigenfunctions ψSCF
a,v (x) are derived from

the eigenvalue equation[
Ta + V SCF

g (x)
]
ψSCF

a,v (x) = ESCF
a,v ψSCF

a,v (x) (14)

which has been solved by the Fourier grid Hamiltonian
method [49].

For the substrate modes the time-dependent self-con-
sistent field basis set, ψSCF

k,v (Qk, t) is used, with the in-
stantaneous eigenfunctions following from the eigenvalue
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Fig. 1. Equilibrium geometry of phthalic acid monomethy-
lester as obtained by using the MP2 method and a 6-
31+G(d, p) basis set. The reaction coordinate x is taken to
coincide with the bond distance RO1−H.

equations[
Tk +

1
2
Ω2
k(t)Q2

k

]
ψSCF
k,v (Qk, t) = ESCF

k,v (t)ψSCF
k,v (Qk, t).

(15)

The parametric dependence on time comes from the time-
dependent harmonic frequencies Ωk(t) defined by equa-
tion (10). The eigenfunctions ψSCF

k,v (Qk, t) are the well-
known harmonic oscillator wave functions. In principle
there would have been at least two other choices for the
basis set describing the substrate modes, i.e. either a con-
stant Hamiltonian or a Hamiltonian which includes the
driving force Fk(t). Since it is primarily the driving force
whose effect on the oscillator dynamics shall be studied,
the basis set defined through equation (15) appears to be
most suitable. In Section 3.2 we will monitor IVR dynam-
ics by calculating the time-dependent populations which
follow from projection of the wave functions Ψa(t) and
Ψk(t) on the SCF vibrational eigenstates.

3 Results

3.1 Model system

In the following we will consider the OH(D) stretching
dynamics in the strong intramolecular hydrogen bond
formed in PMME-H (-D). This choice has been motivated
by the recent IR pump-probe observation of vibrational
quantum beats for this system [25].

We performed ab initio quantum chemical calculations
[50] to determine the most stable geometry and subse-
quently the CRS Hamiltonian according to equation (2).
From the quantum chemical point of view the study of
hydrogen bonds necessitates the inclusion of dynamic cor-
relation effects. This means that one should use, for in-
stance, second order Møller-Plesset perturbation theory
(MP2) or alternatively the computationally less demand-
ing Density Functional Theory (DFT) (for a comparison
see also Ref. [51]). In Figure 1 we show the equilibrium
geometry of PMME following from an MP2 calculation
with a 6-31+G(d, p) basis set. Note that the molecule is
not planar, the symmetry group is only C1.

Concerning the structure two points are worth men-
tioning: first, there exist several although higher energetic

Table 1. Equilibrium bond lengths and angles for the most
stable isomer of PMME-H as obtained on the MP2 and
DFT/B3LYP level of theory (only the most relevant differences
are reported, bond lengths are given in Ȧ).

MP2 DFT/B3LYP

bonds H–O1 0.983 0.992
O1–C1 1.343 1.330
C1–C2 1.518 1.534
C3–C4 1.488 1.494
C4–O2 1.235 1.229
O2–H 1.702 1.593

angles H–O1–C1 111.2 112.4
O1–C1–C2 119.4 120.2
C1–C2–C3 128.0 129.8
C2–C3–C4 124.2 124.9
C3–C4–O2 125.4 125.9

dihedrals H–O1–C1–C2 −9.4 −8.3
O1–C1–C2–C3 38.9 25.3
O2–C4–C3–C2 −37.1 −23.8

isomers, e.g. a hydrogen-bonded rotamer with respect to
the ester group1. Second, using DFT with the B3LYP
functional one obtains a minimum configuration (see also
[25]) which is slightly different from the MP2 data, see Ta-
ble 1. Basically, the DFT predicts a more planar structure
as compared with the MP2 method.

Being interested in the dynamics of the OH stretching
vibration the natural choice of the reaction coordinate is
the bond length RO1−H, see Figure 12. We will choose
the coordinate system such that the x-direction points
along the OH bond in the equilibrium configuration, i.e.
x = (x ≡ RO1−H, y = 0, z = 0). This restriction of the hy-
drogen motion is motivated by the fact that there is a nor-
mal mode corresponding to an almost pure OH stretching
vibration. The reference geometry for the substrate Z(0) is
taken to be the equilibrium configuration (see Fig. 1) cor-
responding to the equilibrium bond length xeq = 0.983 Ȧ.
This configuration has also been used for determination
of the Nsub = 54 normal modes, i.e. x̃ = xeq.

In Figure 2 we show the reference potential Vref(x)
for the motion of the hydrogen atom together with the
three lowest eigenfunctions as calculated using the Fourier
grid method [49]. The potential has the form typical for
strong hydrogen bonds [11]. It is rather anharmonic and
in fact already the 0→1 vibrational transition frequency
is 200 cm−1 below the value obtained with harmonic ap-
proximation in the vicinity of the equilibrium. We further
notice that upon 0→1 excitation the dynamics will take
place within a range of ±0.3 Ȧ with respect to the poten-
tial minimum.

Analyzing the forces and reorganization energies of
the substrate normal modes in this region we found that
there are several low frequency modes (below 300 cm−1)

1 There is also an isoenergetic enantiomer, but separated by
a rather high barrier from the structure in Figure 1. Thus,
mutual coupling can be neglected.

2 Strictly speaking this is no true “reaction coordinate” since
we are considering a nonreactive process.
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Fig. 2. Reference potential for motion of the hydrogen atom
along the one-dimensional reaction coordinate as obtained
from the MP2 calculation. Also shown are the three lowest vi-
brational eigenfunctions for this potential vertically displaced,
according to the respective eigenenergies.

which couple to the reaction coordinate. The largest cou-
pling in this frequency range is experienced by the lowest-
frequency mode ν54 = 68 cm−1. The displacement vectors
shown in Figure 3 indicate that this is a rather delocal-
ized mode which, by virtue of a rotation type vibration
of the ester group, modifies the distance RO1−O2 between
the heavy atoms participating in the hydrogen bond. In-
terestingly, the most strongly coupled mode has a much
higher frequency, ν28 = 1082 cm−1. As can be seen in Fig-
ure 4 this mode is more localized at the hydrogen bond.
In particular it involves a kind of out-of-plane motion of
O1, supporting the notion of its strong effect on the hy-
drogen bond. Figures 3 and 4 also show the diagonal el-
ements of the second derivative matrix, i.e. the approx-
imate frequencies, and the forces (as obtained from the
gradients of the potential) acting on the two modes. We
notice that mode ν28 not only experiences an appreciable
force in the vicinity of the minimum configuration but also
its frequency changes rather strongly. In fact the magni-
tude of both quantities rises dramatically when moving
to smaller distances. This indicates that most likely the
harmonic approximations breaks down in this region of
the PES, which fortunately is not accessed during our dy-
namics simulations. A possible explanation for this break-
down of the harmonic approximation could be that the
normal mode displacement vectors in Figure 4A roughly
point towards the hydrogen atom. This reasoning is sup-
ported by the rather similar behavior which is found for
the low-frequency mode ν54, but now at large distances,
see Figure 3.

3.2 Dynamics

3.2.1 Numerical implementation

The TDSCF equation for the reaction coordinate (7) has
been treated by representing wave function and operators
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Fig. 3. Frequency (A) and force (B) for mode ν54, the most
strongly coupled low-frequency mode in the vicinity of the equi-
librium geometry. The displacement vectors shown in the inset
of panel (A) indicate that this mode is of rotation type with
respect to the ester group.

on a 256 point spatial grid ranging from xmin = 0.3 Ȧ
to xmax = 3.0 Ȧ. The time propagation has been ac-
complished by the split-operator method [52,53], with the
fast Fourier transform procedure used to obtain the spa-
tial derivatives. The time step of propagation ∆t ranged
from 0.1 to 0.5 a.t.u.

At large values of x, absorbing boundary conditions
were employed. Specifically, we used the smooth imaginary
optical potential Uop(x), where

Uop(x) = −iU0 exp
{

(3/2)
[
1− (xmax − xop)2

(x− xop)2

]}
, (16)

if x ≥ x op and U op(x) = 0 otherwise (for further de-
tails see Ref. [54] and references therein). The results pre-
sented below have been calculated for U0 = 0.1Eh and
xop = 2.4 Ȧ. In practice, however, the wave packets never
approached the outer boundary of the x interval.

Concerning the equations for the substrate modes (9)
analytical solutions have been used (see above). This in-
creases remarkably the efficiency of the numerical calcu-
lation. The propagation of the 55 dimensional wave func-
tion for one picosecond required approximately one hour
of CPU-time on a HP-J2240 workstation.
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Fig. 4. Frequency (A) and force (B) for the substrate mode
ν28 which is most strongly coupled to the reaction coordinate.
The displacement vectors shown in the inset of panel (A) in-
dicate that for this rather localized mode, O1 moves almost
perpendicular to the paper plane.

In the following we will present results for the popula-
tion dynamics of the SCF zeroth-order states as defined in
equations (18, 19) for PMME-H and its isotope PMME-D.
The external field has been chosen to have the form

E(t) = E0 sin2

(
tπ

τ

)
cos(ωt). (17)

The carrier frequency was taken such as to give maximum
excitation of the 0→1 transition for the SCF reaction co-
ordinate states for τ = 330 fs (full width at half maximum
165 fs) and a given amplitude E0. In fact the oscillation
patterns which will be discussed below are not very sen-
sitive to the actual value of E0 (within reasonable limits).
Over a wide range of field strengths only the magnitude
of the quantum beats is affected.

3.2.2 1D zeroth-order states

In the following we will focus on the populations of the
one-dimensional (1D) zeroth-order states defined by equa-
tions (14, 15), i.e. for the reaction coordinate we have

Pa,v(t) = |〈ψSCF
a,v |Ψa(t) 〉|2 (18)
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Fig. 5. Population dynamics according to equations (18, 19)
for PMME-D upon excitation with a pulse of the form (17) with
E0 = 0.005 a.u., τ = 330 fs, and ω = 2375 cm−1, panel (A): re-
action coordinate, panel (B): mode 28 (see Fig. 4), panel (C):
population of the first excited state of modes 54 (solid, see
Fig. 3), 52 (dotted), and 50 (dashed). Note that the finite pop-
ulations of the first excited oscillator states at time zero are
due to the driving force which is averaged with respect to the
full ground state wave function.

and for the different substrate normal modes it is

Pk,v(t) = |〈ψSCF
k,v |Ψk(t) 〉|2. (19)

The time-dependent populations given in equations (18,
19) are presented in Figure 5 for PMME-D and in Figure 6
for PMME-H (for pulse parameters see figure captions).

Comparing both figures we notice that the principal
behavior does not change appreciably upon H/D substi-
tution. The populations of the two lowest SCF states along
the reaction coordinate show rapid oscillations modulated
by several slower oscillations, panel (A) of Figures 5 and 6.
Inspecting the dynamics of the most strongly coupled
mode ν28 in panels (B) we find a rather similar behavior.
It should be noted again that there is no direct excitation



G.K. Paramonov et al.: Ultrafast multidimensional dynamics of strong hydrogen bonds 211

0.0 0.5 1.0
time [ps]

0.0

0.5

1.0

po
pu

la
tio

n

A

B

C

ν  = 1a

ν     = 128

ν     = 028

ν  = 0a

0.0 0.5 1.0
time [ps]

0.0

0.5

1.0

po
pu

la
tio

n

0.0 0.5 1.0
time [ps]

0.0

0.1

0.2

0.3

po
pu

la
tio

n

Fig. 6. Population dynamics according to equations (18, 19)
for PMME-H upon excitation with a pulse of the form (17) with
E0 = 0.004 a.u., τ = 330 fs, and ω = 3150 cm−1, panel (A):
reaction coordinate, panel (B): mode 28 (see Fig. 4), panel (C):
population of the first excited state of modes 54 (solid, see
Fig. 3), 52 (dotted), and 50 (dashed).

of the substrate oscillators, i.e. the nonequilibrium popu-
lations are entirely caused by the intramolecular driving
force Fk(t) given by equation (11). The fast oscillations
can therefore be understood in terms of the well-known
dynamics [11] of two states (here (νa = 1, ν28 = 0) and
(νa = 0, ν28 = 1)) which are strongly coupled but have a
rather large energy mismatch (in the present case about
2 000 cm−1).

The appearance of low-frequency modulations of the
population dynamics in Figures 5 and 6 (panels (A) and
(B)), however, follows from the coupling to the various
low-frequency normal modes, e.g., mode ν54, Figure 3. In
order to support this point we show in panels (C) of Fig-
ures 5 and 6 the populations of the first excited vibrational
SCF state for several low-frequency modes. The respective
ground state populations are out-of phase, higher vibra-
tional states are only negligibly excited. This result indi-
cates that there is substantial IVR into the low-frequency
modes with mode ν54 playing the dominant role. This ren-

ders a detailed analysis of the different low-frequency com-
ponents observed in the OH(D) population dynamics in
Figures 5 and 6 rather difficult, since for N coupled levels
there are N(N−1)/2 possible beating frequencies, see also
reference [10]. Finally, we would like to point out that on
the time scale of 2 ps we did not observe any relaxation in
the sense that vibrational excitation energy is distributed
over all possible substrate modes such that the population
of the first excited OH(D) vibrational state effectively de-
cays on some intermediate time scale. In other words, the
present situation corresponds to the scenario typical for
restricted IVR [9]. Strictly speaking there is of course no
true relaxation in this finite dimensional system [11].

3.2.3 3D zeroth-order states: in-phase and out-of-phase
oscillations

The characteristic feature of IVR are quantum beat pat-
terns represented by in-phase and out-of-phase oscilla-
tions of populations, which clearly indicate those vibra-
tional states, or groups of states (manifolds), between
which the intramolecular vibrational energy exchange
takes place [3,9,10] (see also reference [55,56]). However,
inspection of the 1D SCF populations in Figures 5 and 6
does not provide an obvious picture in this respect. That’s
why in the following we will comprise the information con-
tained in the populations of the states for the reaction
coordinate and the strongly coupled modes ν28 and ν54

to obtain a better understanding of the IVR process in
PMME-D.

Let us consider the populations of 3D zeroth-order
states, which represent non-stationary molecular states
with explicitly given excitation in the chosen DOF. Within
the TDSCF approach such a state can be defined as a
product of the respective 1D zeroth-order states. For the
considered three mode case the 3D zeroth-order states
are represented by the three ordered quantum numbers
(v1, v2, v3), indicating v1 vibrational quanta in the reac-
tion coordinate, v2 and v3 vibrational quanta in the sub-
strate mode ν28 and ν54, respectively. The time-dependent
populations of these 3D zeroth-order states will be de-
noted as Pv1,v2,v3(t) and calculated as follows:

Pv1,v2,v3(t) = Pa,v1(t)P28,v2(t)P54,v3(t). (20)

The energy level diagram for the 3D zeroth-order states
is shown in Figure 7A. The actual advantage of this ap-
proach comes with the combination of groups of states into
state manifolds. We will call the Mn manifold the collec-
tion of 3D zeroth-order states with n vibrational quanta
in the reaction coordinate but excluding the state (n, 0, 0),
see Figure 7A.

Let us discuss the population dynamics of the previ-
ous section in terms of the 3D zeroth-order states and the
different state manifolds. In Figure 8A the short-term dy-
namics of the state (1, 0, 0) and the manifold M0 is shown
for the first 500 femtoseconds. Clearly, the oscillations are
in-phase and out-of-phase with respect to each other. This
is indicative of energy exchange between the first excited
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Fig. 7. (A) Level scheme for grouping of 3D zeroth-order states
(νa, ν28, ν54) ≡ (v1, v2, v3) into state manifolds Mn. Note that
the states (n, 0, 0) are excluded from Mn. (B) States and man-
ifolds between which energy exchange takes place (see text).

state of the OD stretching vibration and the substrate
states which build on the OD ground state. In panel (B)
of Figure 8 we find the same type of in-phase and out-of-
phase oscillations between the ground state (0, 0, 0) and
the combination of states [M1 + (2, 0, 0) +M2]. Closer in-
spection shows that the in-phase and out-of-phase beat-
ing patterns in Figures 8A and 8B are not perfect. This
indicates energy exchange between the two enlarged man-
ifolds, [(0, 0, 0) +M1 + (2, 0, 0) +M2] and [M0 + (1, 0, 0)],
which also proceeds via in-phase and out-of-phase oscilla-
tions as can be seen in panel (C) of Figure 8. As a note in
caution we would like to point out that not all the states
in the manifolds are equally important.

Next we focus on the slow oscillations seen for the 3D
population dynamics on a longer time scale of 2 picosec-
onds in panel (D) of Figure 8. First, we notice that the slow
oscillations of the optically “active” states, i.e. (0, 0, 0) and
(1, 0, 0), proceed in-phase with each other. The slow os-
cillations of the populations of both states, however, are
out-of-phase with the manifold M0. The overall popula-
tion of the M0 manifold is for the most part the sum of
slowly oscillating population of state (0, 0, 1), which de-

fines the envelope of this manifold’s population dynam-
ics, and the fast oscillating population of state (0, 1, 0). In
fact the 3D state (0, 1, 0) represents the fast oscillating 1D
zeroth-order state |ψSCF

k=28,v=1〉 while the 3D state (0, 0, 1)
represents the slowly oscillating 1D state |ψSCF

k=54,v=1〉 (cf.
Fig. 5). The overall picture of the IVR dynamics which
follows from this analysis in sketched in Figure 7B.

3.2.4 Transient absorption spectroscopy

In the following we would like to answer the question,
how the population dynamics discussed so far is reflected
in pump-probe nonlinear optical spectroscopy of the OH
band of PMME-H. To this end we have calculated the
energy which is absorbed by a weak probe pulse from the
state prepared by the pump pulse. We define the transient
absorption signal as

S(τdel) = 〈Hmol〉pump+probe − 〈Hmol〉pump , (21)

where 〈Hmol〉 denotes the expectation value of energy af-
ter the action of the pulses and for a given delay time τdel

between pump and probe pulse. Note that the signal de-
fined by equation (21) does not correspond to the signal
measured in a third-order pump-probe experiment in the
spatial direction of the probe pulse propagation. In fact
the present calculation includes the laser field nonpertur-
batively and we do not keep track of the phase of the
polarization, i.e. in this sense S(τdel) is proportional to
the signal which would be obtained by integrating over all
spatial directions. Several methods have been suggested
to solve this problem, e.g., by means of a plane wave type
expansion of some appropriately defined density operator
[57] or by multiple propagation [58]. In view of the numer-
ical effort connected with the propagation of the present
55-dimensional wave function, these approaches appear to
be too demanding. Nevertheless equation (21) provides
very useful information as can be seen in Figure 9. Here,
the probe pulse has been chosen close to resonance with
the 1→2 transition along the reaction coordinate, i.e. we
have the situation of excited state absorption.

The quantum beats observed in the population dynam-
ics in Figure 6 show up as quasi-periodic modulations of
the pump-probe absorption signal. In particular we find
the slow oscillations related to the excitation of mode ν54.
Note that due to the finite finite duration of the probe
pulse, the fast oscillations coming from the coupling be-
tween the reaction coordinate and mode ν28 cannot be
resolved.

4 Summary

The ultrafast dynamics of a strong hydrogen bonded sys-
tem has been investigated. To our knowledge this presents
the first application of a reaction surface Hamiltonian to
study the quantum dynamics of such a large molecule in
full dimensionality.
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Fig. 8. Population dynamics of 3D zeroth-order states and state manifolds as defined in Figure 7. (A): (1, 0, 0) and M0, (B):
(0, 0, 0) and M1 +M2 + (2, 0, 0), (C): M1 +M2 + (0, 0, 0) + (2, 0, 0) and M0 + (1, 0, 0), (D): (0, 0, 0), (1, 0, 0), M0, and (0, 0, 1).
The order corresponds to the ordering of the curves from top to bottom at the end of the time interval.
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Fig. 9. Transient absorption signal according to equation (21)
for excitation in the OH band at 3 150 cm−1and detection at
2 750 cm−1, other parameters as in Figure 6, the amplitude of
the probe pulse a factor 20 smaller than that of the pump pulse.
Note that for strong field driving the signal depends on the
relative phase between pump and probe pulse. This effect has
been minimized in the present case (actual phase difference is
zero) by choosing pump and probe frequencies being resonant
to different transitions.

From the analysis of the laser driven populations of
the SCF vibrational states for the different DOF we can
draw the following conclusions: (i) upon excitation of
the optically active reaction coordinate a number of sub-
strate modes are driven out of their equilibrium due to
intramolecular forces, see Figures 5 and 6. It should be
emphasized that this is a consequence of the anharmonic-
ities contained in the reaction surface Hamiltonian. No
such effects would be observed within the harmonic ap-
proximation. (ii) The two modes which are most strongly
affected correspond to normal mode vibrations which in-
volve the heavy atoms of the hydrogen bond, see Figures 3
and 4. (iii) These two modes are also mainly responsible

for the quantum beats observed for the populations of
the reaction coordinate vibrational states. (iv) Grouping
the different vibrational states into manifolds within a 3D
zeroth-order state space enabled us to analyze the beating
patterns in terms of intramolecular energy redistribution
processes, revealed in the in-phase and out-of-phase pop-
ulation oscillations. The pronounced low-frequency mod-
ulation of the populations of the OH(D) stretch SCF vi-
brational states are mostly due to the lowest-frequency
mode. (v) PMME-H and its isotope PMME-D show ap-
proximately the same dynamical features which results
from the fact, that the coupling to the important sub-
strate modes does not change. (vi) On the time scale of
2 picoseconds we observed no signatures of relaxation type
effects.

Finally, we would like to comment on the validity of
the TDSCF approach which is the basis for these find-
ings. It is well appreciated that the single configuration
treatment performs well as long as details of the mode
coupling are only of minor importance [32–34]. Intuitively
we would expect that for the present single minimum po-
tential and under low excitation conditions where only
the region around the potential minimum is explored (cf.
Fig. 2) the TDSCF approach is well justified. Indeed pre-
liminary multiconfiguration TDSCF calculations includ-
ing the ten most strongly coupled degrees of freedom sup-
port this point of view.

The oscillations due to the lowest-frequency mode ob-
served for the population dynamics are also present in
transient absorption spectra, see Figure 9. This is rather
encouraging since our study was motivated by the ob-
servation of vibrational quantum beats for this system
[25]. Although the agreement in the oscillation periods,
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here 500 fs and 300 fs in the experiment, is rather encour-
aging (a difference is to be expected since accurate quan-
tum chemical determination of low frequencies remains
to be a challenge), we would like to point out that at the
present we did not aim at simulating the experimental con-
ditions of reference [25]. This would require to take into
account the effect of the solvent which leads to a rather
rapid relaxation and energy dissipation.

Future work shall be directed towards an approxi-
mate inclusion of an environment either within a full-
dimensional description or in the spirit of the reduced den-
sity matrix approach [11]. It should be pointed out that
the present form of the CRS Hamiltonian is well suited
to introduce a spectral density for the substrate modes
and to apply numerical path integral techniques [59,60].
On the other hand, one could make use of the TDSCF
idea in the context of the density matrix dynamics as pro-
posed (on a multiconfiguration level) in reference [61]. Fi-
nally, the limits of the single configuration TDSCF theory
should be fully explored by using a multiconfiguration ap-
proach [32,34].
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